\qquad due \qquad

Name \qquad Per
LO: I can simplify radical expressions including adding, subtracting, multiplying, dividing and rationalizing denominators.
\square (1) Simplifying Radicals: Finding hidden perfect squares and taking their root.
calculator
Simplify each expression by factoring to find perfect squares and then taking their root.

1) $\sqrt{75}$
2) $\sqrt{16}$
3) $\sqrt{36}$
4) $\sqrt{64}$
5) $\sqrt{80}$
6) $\sqrt{30}$
7) $\sqrt{8}$
8) $\sqrt{18}$
9) $\sqrt{32}$
10) $\sqrt{12}$
11) $\sqrt{8}$
12) $\sqrt{108}$
13) $\sqrt{125}$
14) $\sqrt{50}$
15) $\sqrt{175}$
16) $\sqrt{28}$
17) $\sqrt{45}$
18) $\sqrt{72}$
19) $\sqrt{20}$
20) $\sqrt{150}$

(2) Simplifying Radical Expressions: Adding and Subtracting

\square Add or subtract radicals by simplifying each term and then combining like terms.
a. $2 \sqrt{2}+\sqrt{5}-6 \sqrt{2}=-4 \sqrt{2}+\sqrt{5} \quad$ Subtract like radicals.
b. $4 \sqrt{3}-\sqrt{27}=4 \sqrt{3}-\sqrt{9 \cdot 3} \quad$ Perfect square factor

$$
\begin{array}{ll}
=4 \sqrt{3}-\sqrt{9} \cdot \sqrt{3} & \\
=4 \sqrt{3}-3 \sqrt{3} & \\
=\sqrt{3} & \text { Simplify. product property. } \\
=\sqrt{3} & \text { Subtract like radicals. }
\end{array}
$$

1) $3 \sqrt{6}-4 \sqrt{6}$
2) $-3 \sqrt{7}+4 \sqrt{7}$
3) $-11 \sqrt{21}-11 \sqrt{21}$
4) $-9 \sqrt{15}+10 \sqrt{15}$
5) $-10 \sqrt{7}+12 \sqrt{7}$
6) $-3 \sqrt{17}-4 \sqrt{17}$
7) $-10 \sqrt{11}-11 \sqrt{11}$
8) $-2 \sqrt{3}+3 \sqrt{27}$
9) $2 \sqrt{6}-2 \sqrt{24}$
10) $2 \sqrt{6}+3 \sqrt{54}$
11) $-\sqrt{12}+3 \sqrt{3}$
12) $3 \sqrt{3}-\sqrt{27}$
13) $3 \sqrt{8}+3 \sqrt{2}$
14) $-3 \sqrt{6}+3 \sqrt{6}$
\square (3) Simplifying Radical Expressions: Multiplying
calculator
\square (a) Multiply numbers that are BOTH OUTSIDE the radical. Multiply numbers that are BOTH INSIDE the radical.
Simplify the expression
$2 \cdot 5=$ \qquad $2 \cdot \sqrt{5}=$ \qquad $\sqrt{2} \cdot 5=$
$2 \sqrt{3} \cdot 5=$ \qquad

$$
2 \sqrt{3} \cdot \sqrt{5}=
$$

$2 \sqrt{3} \cdot 4 \sqrt{5}=$ \qquad

1) $\sqrt{6} \cdot 4 \sqrt{6}$
2) $-\sqrt{5} \cdot \sqrt{20}$
3) $-\sqrt{2} \cdot \sqrt{3}$
4) $4 \sqrt{8} \cdot \sqrt{2}$
5) $\sqrt{12} \cdot \sqrt{15}$
6) $\sqrt{5} \cdot-2 \sqrt{5}$

$$
\text { 7) }-3 \sqrt{5} \cdot \sqrt{20}
$$

8) $\sqrt{15} \cdot 3 \sqrt{5}$
9) $\sqrt{9} \cdot \sqrt{3}$
10) $-4 \sqrt{8} \cdot \sqrt{10}$
\square (4) Simplifying Radical Expressions: Dividing and rationalizing the Denominator
$\frac{6}{3}=$

$$
\frac{\sqrt{6}}{\sqrt{2}}=
$$

$$
\frac{\sqrt{6}}{2}=
$$

$$
\frac{12 \sqrt{6}}{2}=
$$

$$
\frac{12 \sqrt{6}}{\sqrt{2}}=
$$

\qquad

Simplest form for fractions with $\sqrt{ }$

1. No perfect square factor under $\sqrt{ } \quad$ ex. $\sqrt{75}=\sqrt{25} \sqrt{3}=5 \sqrt{3}$

2. No $\sqrt{ }$ in a denominator
ex. $\frac{2}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{\sqrt{9}}=\frac{2 \sqrt{3}}{3}$
3. Must be reduced ex. $\frac{8 \sqrt{5}}{2}=4 \sqrt{5}$
11) $\frac{\sqrt{8}}{\sqrt{7}}$
12) $\frac{7}{8 \sqrt{7}}$
13) $\frac{\sqrt{2}}{\sqrt{6}}$
14) $\frac{\sqrt{21}}{\sqrt{15}}$
15) $\frac{\sqrt{3}}{6 \sqrt{7}}$
16) $\frac{\sqrt{5}}{\sqrt{3}}$
17) $\frac{\sqrt{15}}{3 \sqrt{6}}$
18) $\frac{\sqrt{8}}{2 \sqrt{7}}$

$\square(5) \quad$ Exit Ticket
 calculator ON THE LAST PAGE

$\begin{array}{ll}\square(6) & \text { Homework } \\ \text { calculator } & \text { Simplify each radical expression. ODD PROBLEMS REQUIRED }\end{array}$

1. $\sqrt{5} \sqrt{15}$
2. $\sqrt{14} \sqrt{35}$
3. $\sqrt{2}(\sqrt{3}-\sqrt{5})$
4. $\sqrt{3}(\sqrt{27}-\sqrt{3})$
5. $\sqrt{2}(\sqrt{6}+\sqrt{10})$
6. $\sqrt{7}(3-\sqrt{7})$
7. $\sqrt{5}(3 \sqrt{5}-4 \sqrt{3})$
8. $\sqrt{y}(\sqrt{y}-\sqrt{5})$
\square (6) Homework
calculator
\square Simplify each radical expression. ODD PROBLEMS REQUIRED

$$
\text { 15) }-3 \sqrt{20}-\sqrt{5}
$$

16) $2 \sqrt{45}-2 \sqrt{5}$
17) $3 \sqrt{18}-2 \sqrt{2}$
18) $-3 \sqrt{18}+3 \sqrt{8}-\sqrt{24}$
19) $3 \sqrt{18}+3 \sqrt{12}+2 \sqrt{27}$
20) $-3 \sqrt{5}-\sqrt{6}-\sqrt{5}$
21. $\sqrt{\frac{27}{16}}$
22. $\sqrt{\frac{14}{y^{2}}}$
23. $\sqrt{\frac{24}{25}}$
24. $\sqrt{\frac{7}{5}}$
25. $\sqrt{\frac{10}{7}}$
26. $\frac{2}{\sqrt{3}}$
27. $\frac{5}{\sqrt{10}}$
28. $\frac{6}{\sqrt{3}}$
29. $\frac{2}{\sqrt{6}}$

30. $\sqrt{3}(\sqrt{27}-\sqrt{3})$
31. $\sqrt{\frac{7}{5}}$
32. $\frac{2}{\sqrt{3}}$
16) $2 \sqrt{45}-2 \sqrt{5}$
17) $-3 \sqrt{18}+3 \sqrt{8}-\sqrt{24}$
\qquad Per

A perfect square is a number whose square root is an integer. Half of the first 300 perfect squares are listed for you. Fill in the other 15 perfect squares.

$\sqrt{1}=1$	because	$1^{2}=1$	$\sqrt{256}=16$	because	$16^{2}=256$
$\sqrt{ }$	because	${ }^{2}=$	$\sqrt{ }=$	because	${ }^{2}$
$\sqrt{ }$	because	${ }^{2}=$	$\sqrt{ }=$	because	${ }^{2}$
$\sqrt{ }$	because	2	$\sqrt{361}=19$	because	$19^{2}=361$
$\sqrt{25}=5$	because	$5^{2}=25$		because	${ }^{2}=$
	because	${ }^{2}=$	$\sqrt{441}=21$	because	$21^{2}=441$
$\sqrt{49}=7$	because	$7^{2}=49$	$\sqrt{ }$	because	
$\sqrt{ }$	because	$2=$		because	${ }^{2}$
$\sqrt{ }$	because	${ }^{2}=$	$\sqrt{576}=24$	because	$24^{2}=576$
$\sqrt{100}=10$	because	$10^{2}=100$	$\sqrt{625}=25$	because	$25^{2}=625$
$\sqrt{ }$	because	$2=$		because	${ }^{2}=$
$\sqrt{144}=12$	because	$12^{2}=144$	$\sqrt{729}=27$	because	$27^{2}=729$
$\sqrt{ }$	because	${ }^{2}=$	$\sqrt{784}=28$	because	$28^{2}=784$
$\sqrt{196}=14$	because	$14^{2}=196$		because	${ }^{2}=$
$\sqrt{15}=225$	because	$15^{2}=225$	$\sqrt{900}=30$	because	$30^{2}=900$

