\qquad

Solving One-Step Equations - Multiplication \& Division (Sol 6.18 \& 7.14)

- Remember: The GOAL of solving equations:
o To do this you need to \qquad the variable, using \qquad

State the INVERSE OPERATIONS

o Add 23
o Subtract 18 \qquad
o Multiply by -15 \qquad
o Divide by 8 \qquad

Example 1: \quad Solve $8 x=56$.
Solution:

Where is the variable?
What is done to it?
How can I undo that?
Apply to both sides.
Solve/Simplify

Example 2: \quad Solve $\frac{a}{5}=12$
Solution:

$$
\frac{a}{5}=12
$$

$a=$ \qquad

Check:
$8 x=56$
$8(\ldots \quad) ?$
\qquad $=56 \checkmark$

Write original equation.
Substitute for variable.
Is it true?

Check:

$$
\begin{gathered}
\frac{a}{5}=12 \\
\frac{(\quad)}{5}=12 \\
=12
\end{gathered}
$$

Let's Practice!!

Solve each equation. Check your solution.

Solve	Check here:		Solve
$3 a=18$		$\frac{b}{4}=12$	
$4=\frac{f}{3}$		$48=6 y$	
$121=11 a$		$\frac{g}{7}=7$	
$9 x=45$			

Multiplicative Inverses (Reciprocals): Used to solve multiplication/division equations that contain fractions!
Find the Multiplicative Inverse, or reciprocal of: $\frac{\mathbf{1}}{\mathbf{3}}$
$\frac{5}{7}$
$\frac{2}{5}$

Now let's use multiplicative inverses to solve equations...

Solve	$\frac{3}{5} t=6$	Solve $\frac{2}{7} t=8$

The coefficient of t is $\frac{\mathbf{3}}{\mathbf{5}}$. The reciprocal of $\frac{\mathbf{3}}{\mathbf{5}}$ is \qquad .
\square
$\frac{3}{5} t=6 \square$
Multiply each side by the Multiplicative Inverse.
$t=$ \qquad . Simplify.
$t=$ \qquad . Solve.

Let's Practice!!

Solve each equation. Check your solution.

$\frac{1}{7} t=3$	$\frac{4}{5} t=8$		
$\frac{1}{9} t=6$		$\frac{3}{5} t=6$	
$\frac{2}{3}=\frac{3}{10} t$		$\frac{1}{4} a=\frac{4}{15}$	
$\frac{a}{9}=11$		$\frac{h}{8}=6$	

$\frac{3}{4} x=9$		$\frac{5}{8} \mathrm{k}=25$	
$\frac{a}{6}=8$		$7 \mathrm{~s}=49$	
$32=16 \mathrm{~h}$		$5=\frac{p}{5}$	
$4 \mathrm{y}=12$		$\frac{x}{4}=32$	
$17+\mathrm{c}=41$		$\frac{2}{5} \mathrm{y}=\frac{4}{15}$	
$\frac{1}{12}=11$			
$10+\mathrm{d}=24$			

\qquad

1. Solve the equations. Check your solutions.

Colve	Check here:	Solve	Check here:
$15=w+4$		$a-2=10$	
$3 b=21$		$\frac{1}{3} n=13$	
$y-7=12$		$34=\frac{y}{2}$	
$\frac{3}{7}=5$			
$4 x=24$			

Vocabulary Check:

1. Operations that "undo" each other are called \qquad
2. A mathematical sentence that contains an equal sign is an \qquad
3. The value of the variable that makes the equation true is called the \qquad
4. A \qquad is a symbol, usually a letter, used to represent an unknown number.

Solve	Check	Solve	Check
$7 \mathrm{t}=49$		$15 \mathrm{~h}=75$	
$\frac{3}{4} x=9$		$-d=-6$	
$-c=25$		$5 \mathrm{k}=25$	
$-12=2+h$			

