Name:		

Some quadratic equations in the form of $ax^2 + bx + c = 0$ can be solved easily by factoring. For example, the equation $x^2 + 6x - 16 = 0$ can be factored easily to (x + 8)(x - 2) = 0 to give solutions of x = -8 and x = 2

When a quadratic equation cannot be factored using integers, you have two options. You can use the quadratic formula of you can use a method called **completing the square**. When a = 1, completing the square is the way to go (when a > 1, use the quadratic formula).

Example 1: Solve $x^2 + 8x - 10 = 0$ by completing the square.

Since it cannot be factored using integers, Write the equation in the form $ax^2 + bx = -c$	$x^2 + 8x - 10 = 0$ $x^2 + 8x = 10$
Find $\frac{1}{2}$ of \boldsymbol{b} and add the square of that number $(\frac{\boldsymbol{b}}{2})^2$ to both sides of the equation	Think $b = 8$ $\frac{1}{2}b = 4 \text{ and } 4^2 = 16$ $x^2 + 8x = 10$
	$x^2 + 8x + 16 = 10 + 16$
The left side is now a perfect square trinomial (PST), so factor it.	(x+4)(x+4) = 26 $(x+4)^2 = 26$
Find the square root of each side.	$(x+4)^2 = 26$ $x+4 = \pm \sqrt{26}$
Solve for x	$x = -4 \pm \sqrt{26}$

Solve each quadratic by completing the square.

1)
$$a^2 + 2a - 3 = 0$$

7)
$$m^2 - 12m + 26 = 0$$

2)
$$a^2 - 2a - 8 = 0$$

8)
$$x^2 + 12x + 20 = 0$$

3)
$$p^2 + 16p - 22 = 0$$

9)
$$k^2 - 8k - 48 = 0$$

4)
$$k^2 + 8k + 12 = 0$$

10)
$$p^2 + 2p - 63 = 0$$

5)
$$r^2 + 2r - 33 = 0$$

11)
$$m^2 + 2m - 48 = -6$$

6)
$$a^2 - 2a - 48 = 0$$

12)
$$p^2 - 8p + 21 = 6$$