Regents Exam Questions

F.BF.A.1: Modeling Exponential Functions 1a www.jmap.org

F.BF.A. 1 Modeling Exponential Functions 1a

1 The current population of a town is 10,000 . If the population, P, increases by 20% each year, which equation could be used to find the population after t years?

1) $P=10,000(0.2)^{t}$
2) $P=10,000(0.8)^{t}$
3) $P=10,000(1.2)^{t}$
4) $P=10,000(1.8)^{t}$

2 Robert invests $\$ 800$ in an account at 1.8% interest compounded annually. He will make no deposits or withdrawals on this account for 3 years. Which formula could be used to find the balance, A, in the account after the 3 years?

1) $A=800(1-.18)^{3}$
2) $A=800(1+.18)^{3}$
3) $A=800(1-.018)^{3}$
4) $A=800(1+.018)^{3}$

3 Krystal was given $\$ 3000$ when she turned 2 years old. Her parents invested it at a 2% interest rate compounded annually. No deposits or withdrawals were made. Which expression can be used to determine how much money Krystal had in the account when she turned 18 ?

1) $3000(1+0.02)^{16}$
2) $3000(1-0.02)^{16}$
3) $3000(1+0.02)^{18}$
4) $3000(1-0.02)^{18}$

4 Mr. Smith invested $\$ 2,500$ in a savings account that earns 3% interest compounded annually. He made no additional deposits or withdrawals. Which expression can be used to determine the number of dollars in this account at the end of 4 years?

1) $2500(1+0.03)^{4}$
2) $2500(1+0.3)^{4}$
3) $2500(1+0.04)^{3}$
4) $2500(1+0.4)^{3}$

5 A student invests $\$ 500$ for 3 years in a savings account that earns 4% interest per year. No further deposits or withdrawals are made during this time. Which statement does not yield the correct balance in the account at the end of 3 years?

1) $500(1.04)^{3}$
2) $500(1-.04)^{3}$
3) $500(1+.04)(1+.04)(1+.04)$
4) $500+500(.04)+520(.04)+540.8(.04)$

6 Rhonda deposited $\$ 3000$ in an account in the Merrick National Bank, earning 4.2% interest, compounded annually. She made no deposits or withdrawals. Write an equation that can be used to find B, her account balance after t years.

7 Kathy plans to purchase a car that depreciates (loses value) at a rate of 14% per year. The initial cost of the car is $\$ 21,000$. Which equation represents the value, v, of the car after 3 years?

1) $v=21,000(0.14)^{3}$
2) $v=21,000(0.86)^{3}$
3) $v=21,000(1.14)^{3}$
4) $v=21,000(0.86)(3)$

8 A car depreciates (loses value) at a rate of 4.5% annually. Greg purchased a car for $\$ 12,500$. Which equation can be used to determine the value of the car, V, after 5 years?

1) $V=12,500(0.55)^{5}$
2) $V=12,500(0.955)^{5}$
3) $V=12,500(1.045)^{5}$
4) $V=12,500(1.45)^{5}$

9 The New York Volleyball Association invited 64 teams to compete in a tournament. After each round, half of the teams were eliminated. Which equation represents the number of teams, t, that remained in the tournament after r rounds?

1) $t=64(r)^{0.5}$
2) $t=64(-0.5)^{r}$
3) $t=64(1.5)^{r}$
4) $t=64(0.5)^{r}$

F.BF.A. 1 Modeling Exponential Functions 1a

Answer Section

1	ANS: 3	REF: 011310ia
2	ANS: 4	REF: 061621ia
3	ANS: 1	REF: 011504ai
4	ANS: 1	REF: 011202ia
5	ANS: 2	REF: 061617ai
6	ANS:	
	B=3000(1.042)	
	REF: 081426ai	
7	ANS: 2	REF: 060830ia
8	ANS: 2	REF: 061229ia
9	ANS: 4	REF: 010908ia

