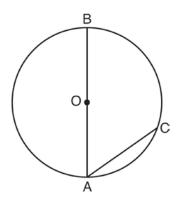
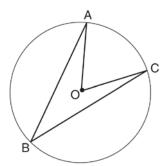

G.C.A.2: Chords, Secants and Tangents

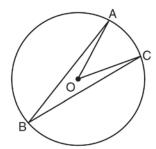

1 In the diagram below, $\angle ABC$ is inscribed in circle O.

The ratio of the measure of $\angle ABC$ to the measure

of \widehat{AC} is

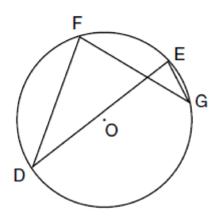

- 1) 1:1
- 2) 1:2
- 3) 1:3
- 4) 1:4
- 2 As shown in the diagram below, \overline{AB} is a diameter of circle O, and chord \overline{AC} is drawn.

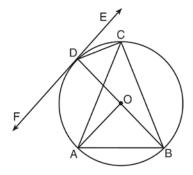
If $m\angle BAC = 70$, then \widehat{mAC} is


- 1) 40
- 2) 70
- 3) 110
- 4) 140

3 Circle O with $\angle AOC$ and $\angle ABC$ is shown in the diagram below.

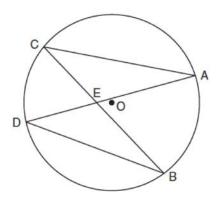
What is the ratio of $m\angle AOC$ to $m\angle ABC$?


- 1) 1:1
- 2) 2:1
- 3) 3:1
- 4) 1:2
- 4 In the diagram below of circle O, m $\angle ABC = 24$.


What is the $m \angle AOC$?

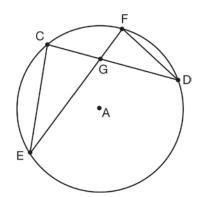
- 1) 12
- 2) 24
- 3) 48
- 4) 60

5 In the diagram below of circle O, chords \overline{DF} , \overline{DE} , \overline{FG} , and \overline{EG} are drawn such that $\widehat{mDF}:\widehat{mFE}:\widehat{mEG}:\widehat{mGD}=5:2:1:7$. Identify one pair of inscribed angles that are congruent to each other and give their measure.


6 In the diagram below, \overline{DC} , \overline{AC} , \overline{DOB} , \overline{CB} , and \overline{AB} are chords of circle O, \overline{FDE} is tangent at point D, and radius \overline{AO} is drawn. Sam decides to apply this theorem to the diagram: "An angle inscribed in a semi-circle is a right angle."

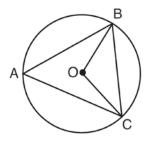
Which angle is Sam referring to?

- 1) ∠*AOB*
- 2) ∠*BAC*
- 3) ∠*DCB*
- 4) ∠*FDB*


7 In the diagram below of circle O, chords \overline{AD} and \overline{BC} intersect at E.

Which relationship must be true?

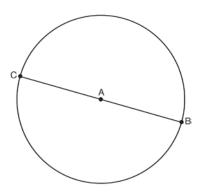
- 1) $\triangle CAE \cong \triangle DBE$
- 2) $\triangle AEC \sim \triangle BED$
- 3) $\angle ACB \cong \angle CBD$
- 4) $\widehat{CA} \cong \widehat{DB}$


8 In the diagram of circle A shown below, chords \overline{CD} and \overline{EF} intersect at G, and chords \overline{CE} and \overline{FD} are drawn.

Which statement is *not* always true?

- 1) $\overline{CG} \cong \overline{FG}$
- 2) $\angle CEG \cong \angle FDG$
- 3) $\frac{CE}{EG} = \frac{FD}{DG}$
- 4) $\triangle CEG \sim \triangle FDG$

9 In the diagram below of circle O, \overline{OB} and \overline{OC} are radii, and chords \overline{AB} , \overline{BC} , and \overline{AC} are drawn.



Which statement must always be true?

1) $\angle BAC \cong \angle BOC$

- 2) $m\angle BAC = \frac{1}{2} m\angle BOC$
- 3) $\triangle BAC$ and $\triangle BOC$ are isosceles.
- 4) The area of $\triangle BAC$ is twice the area of $\triangle BOC$.

10 In the diagram below, \overline{BC} is the diameter of circle A.

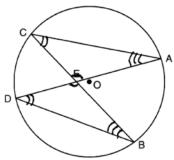
Point D, which is unique from points B and C, is plotted on circle A. Which statement must always be true?

- 1) $\triangle BCD$ is a right triangle.
- 2) $\triangle BCD$ is an isosceles triangle.
- 3) $\triangle BAD$ and $\triangle CBD$ are similar triangles.
- 4) $\triangle BAD$ and $\triangle CAD$ are congruent triangles.

G.C.A.2: Chords, Secants and Tangents

Answer Section

1 ANS: 2 REF: 011602ge 2 ANS: 1 REF: 081518ge 3 ANS: 2 REF: 061322ge 4 ANS: 3 REF: 011523ge


5 ANS:

 $\angle D$, $\angle G$ and 24° or $\angle E$, $\angle F$ and 84°. $\widehat{mFE} = \frac{2}{15} \times 360 = 48$. Since the chords forming $\angle D$ and $\angle G$ are intercepted by \widehat{FE} , their measure is 24°. $\widehat{mGD} = \frac{7}{15} \times 360 = 168$. Since the chords forming $\angle E$ and $\angle F$ are intercepted by \widehat{GD} , their measure is 84°.

REF: fall0836ge

6 ANS: 3 REF: 011621geo

7 ANS: 2

REF: 061026ge

8 ANS: 1 REF: 061508geo 9 ANS: 2 REF: 061610geo

10 ANS: 1

The other statements are true only if $\overline{AD} \perp \overline{BC}$.

REF: 081623geo