G.C.A.2: Chords, Secants and Tangents 18

1 Chords \overline{AB} and \overline{CD} intersect at E in circle O, as shown in the diagram below. Secant \overline{FDA} and tangent \overline{FB} are drawn to circle O from external point F and chord \overline{AC} is drawn. The $\widehat{mDA} = 56$, $\widehat{mDB} = 112$, and the ratio of $\widehat{mAC}:\widehat{mCB} = 3:1$.

Determine $m\angle CEB$. Determine $m\angle F$. Determine $m\angle DAC$.

2 In circle O shown below, diameter \overline{AC} is perpendicular to \overline{CD} at point C, and chords \overline{AB} , \overline{BC} , \overline{AE} , and \overline{CE} are drawn.

Which statement is *not* always true?

- 1) $\angle ACB \cong \angle BCD$
- 2) $\angle ABC \cong \angle ACD$
- 3) $\angle BAC \cong \angle DCB$
- 4) $\angle CBA \cong \angle AEC$

3 Given circle O with diameter \overline{GOAL} ; secants \overline{HUG} and \overline{HTAM} intersect at point H; $\underline{mGM}:\underline{mLT}=7:3:2$; and chord $\overline{GU}\cong \mathrm{chord}\,\overline{UT}$. Find the ratio of $\mathrm{m}\angle UGL$ to $\mathrm{m}\angle H$.

4 In the accompanying diagram, circle O has radius \overrightarrow{OD} , diameter \overrightarrow{BOHF} , secant \overrightarrow{CBA} , and chords \overrightarrow{DHG} and \overrightarrow{BD} ; \overrightarrow{CE} is tangent to circle O at D; $\overrightarrow{mDF} = 80$; and $\overrightarrow{mBA} : \overrightarrow{mAG} : \overrightarrow{mGF} = 3:2:1$. Find \overrightarrow{mGF} , $\overrightarrow{m} \angle BHD$, $\overrightarrow{m} \angle BDG$, $\overrightarrow{m} \angle GDE$, $\overrightarrow{m} \angle C$, and $\overrightarrow{m} \angle BOD$.

5 In the accompanying diagram, \overline{PA} is tangent to circle O at A, chord \overline{AC} and secant \overline{PCED} are drawn, and chords \overline{AOB} and \overline{CD} intersect at E. If $\widehat{mAD} = 130$ and $m\angle BAC = 50$, find $m\angle P$, $m\angle BEC$, and $m\angle PCA$.

G.C.A.2: Chords, Secants and Tangents 18 Answer Section

1 ANS:

52, 40, 80.
$$360 - (56 + 112) = 192$$
. $\frac{192 - 112}{2} = 40$. $\frac{112 + 48}{2} = 80$
 $\frac{1}{4} \times 192 = 48$
 $\frac{56 + 48}{2} = 52$

REF: 081238ge

2 ANS: 1 REF: 061520geo

3 ANS:

2:1. \widehat{GM} and \widehat{ML} form a semi-circle and measure 126° $(\frac{7}{10} \times 180)$ and 54° $(\frac{3}{10} \times 180)$, respectively. \widehat{LT} measures 36°. \widehat{GM} and \widehat{ML} form a semi-circle and measure 126°. \widehat{GUT} measures 144° (180-36). Equal chords intercept equal arcs. Because chord $\overline{GU}\cong \operatorname{chord} \overline{UT}$, \widehat{GU} and \widehat{UT} each measures 72° $(\frac{144}{2})$. $\widehat{mUTL}=108$ (72 + 36). The measure of an inscribed angle is half that of its intercepted arc. So $m\angle UGL=54$. The angle formed by a tangent and a secant is equal to half the difference between the intercepted arcs. $\frac{126-72}{2}=27$. The ratio of $m\angle UGL$ to $m\angle H$ is 54:27, or 2:1.

REF: 080333b

4 ANS:

30, 65, 75, 55, 35, 100. \widehat{BA} , \widehat{AG} and \widehat{GF} form a semi-circle and measure 90° $(\frac{3}{6} \times 180)$, 60° $(\frac{2}{6} \times 180)$ and 30° $(\frac{1}{6} \times 180)$, respectively. The measure of an inscribed angle is half that of its intercepted arc. So $m\angle BDG = 75$ $(\frac{90+60}{2})$ and $m\angle HBD = 40$ $(\frac{80}{2})$. Therefore $m\angle BHD = 65$ (180-(75+40)). The angle formed by a tangent and a chord is half the intercepted arc. Since the intercepted arc is 110° (80+30), $m\angle GDE = 55$. Given diameter \overline{BOHF} and $m\widehat{DF} = 80$, $m\widehat{BD} = 100$. The angle formed by a tangent and a secant is equal to half the difference between the intercepted arcs, so $m\angle C$. $\frac{(60+30+80)-100}{2} = 35$. The measure of a central angle is equal to the measure of the arc it intercepts, so $m\angle BOD = 100$.

REF: 080633b

5 ANS:

25, 115, 115

REF: 011033b