Guided Notes: Solving Systems of Equation by Graphing	Name:	
DEFINITIONS:		
• A system of equations is a set of or more equations	is with the same	<u> </u> .
• A solution to a system of equations is a set of values for the varia	ables that	_all the
equations simultaneously (at the same time).		
• The of	two graphed lines is the	
to a system of equations.		
SOLVING BY GRAPHING STEPS:		
• <u>STEP 1</u> : Solve both equations for In other words, put the eq	quation in	
form,		
• STEP 2: Using the and		graph
both lines on the same coordinate plane.		
• STEP 3: Find the	if it occurs. This	
is the solution	to the system.	
EXAMPLE 1: $3x + y = 9$	9	Ex 1
y = -x - 1 Step 1: Solve by equations for y.	7	
Which equation do we need to rewrite?	5	
	4	
	2	
Stan 2. Using the clane and y intercent around both lines on the	0 2 4 6 8 10	12 14
<u>step 2:</u> Osing the slope and y-intercept graph both lines on the coordinate plane.	-2	
Stan 2. Find the naint of intersection if it accurs	-4	
	-5 -6	
EXAMPLE 2: $y = -2x + 3$ -x + 2y = -4	-7	
$\frac{-x + 2y4}{\text{Step 1: Solve by equations for y.}}$	8	Ex 2
Which equation do we need to rewrite?	6	
	4	
	2	
	8 -6 -4 -2 0 2	4 6 8
<u>Step 2: Using the slope and y-intercept graph both lines on the coordinate plane.</u>	-2	++++
	-4	
<u>Step 3:</u> Find the point of intersection if it occurs	-6	

EXAMPLE 3:

$$y = \frac{1}{2}x - 1$$
$$6y - 3x = 6$$

<u>Step 1:</u> Solve by equations for y.

Which equation do we need to rewrite?_____

<u>Step 2:</u> Using the slope and y-intercept graph both lines on the coordinate plane.

Step 3: Find the point of intersection if it occurs.

EXAMPLE 4:

$$y = \frac{2}{3}x - 4$$
$$2x - 3y = 12$$

<u>Step 1:</u> Solve by equations for y.

Which equation do we need to rewrite?______

<u>Step 2:</u> Using the slope and y-intercept graph both lines on the coordinate plane.

Step 3: Find the point of intersection if it occurs.

WORD PROBLEM:

Suppose you and your friends form a band. You want to record a demo. Studio A rents for \$100 plus \$50 per hour. Studio B rents for \$50 plus \$75 per hour.

Studio B:

a. Write an equation to represent the cost of each studio.

Studio A: _____

b. Solve the system by graphing.

Solution: _____

c. Explain what the solution of the system means in terms of renting a studio.

Solving Systems of Linear Equations by Graphing Practice

Solution:_____

$$4. \quad 2x - 3y = 9$$
$$y = \frac{4}{3}x - 5$$

Solution:_____

5. -2x + 4y = 12x - 2y = 6

Solution:_____